
 

 

_________________________________________________________________________________________________ 

*Corresponding author e-mail: naglaa_math2019@yahoo.com ; (N. F. Abdallah). 

Receive Date: 23 January 2022, Revise Date: 16 December 2022, Accept Date: 11 April 2022 

DOI: 10.21608/EJCHEM.2022.117814.5310 

©2022 National Information and Documentation Center (NIDOC) 
 

 

Egypt. J. Chem. Vol. 65, No. SI: 13B pp. 137 - 144 (2022) 

 

13 
 

                                                                                                                      

 Activation energy and chemical reaction effects on MHD Bingham 

nanofluid flow through a non-Darcy porous media 
  

M. G. Ibrahima, N. F. Abdallahb* and M. Y. Abou-zeidb 

aDepartment of Basic and Applied Science, Faculty of Engineering, International academy for 

engineering and media science, 11311, Cairo, Egypt 

b Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Roxy, Cairo, 11757, 

Egypt. 

Abstract 

     This study is carried out to analyze the problem of MHD mixed convection flow of Bingham nanofluid through a non-Darcy 

porous medium in a tube with peristalsis. Activation energy and viscous dissipation effects are taken into consideration. The 

governing partial differential equations are transformed into a set of nonlinear ordinary differential equations under the 

assumptions of long wavelength and low-Reynolds number approximations. MS-DTM technique is performed to obtain series 

solutions for that system of equations. The behavior of the axial velocity, temperature and nanoparticles concentration 

distributions under the effect of different problem parameters to these distributions is discussed analytically and graphically. 

Mechanics of some sophisticated physiological transports may be explained with the help of this study.  

Keywords: Blood flow; Bingham nanofluid; Non-Darcian effects; Activation energy; Ms-DTM. 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

1. Introduction 

A non-Newtonian fluid is a fluid that does not obey 

Newton's law of viscosity. In non-Newtonian fluids, 

the viscosity is affected by the forces applied to it to 

change its physical state to become more liquid or 

more solid. Many solutions of molten salts and 

polymers are also non-Newtonian fluids. Such as 

custard, honey, toothpaste, paint, blood, shower gel 

(shampoo) and starch [1]. Often, the viscosity of non-

Newtonian fluids depends on the shear rate or history 

of the shear rate. In Newtonian fluids, the relationship 

between shear force and shear rate is linear, the slope 

of this line representing the viscosity parameter. In 

non-Newtonian fluids the relationship between shear 

stress and shear rate is different [2]. In this paper 

Bingham fluid is presented as a one of sub-classes of 

non-Newtonian fluid, which has numerous 

applications in practical part of life. Such of this 

applications, are ceramics [3], avalanches, and muds 

[4, 5], and shallow flow of soils [6, 7]. Furthermore, 

studies of Bingham fluid has gained more interest in 

the last decades, like; Tanveer et al [8] discretized the 

theoretical analysis on peristaltic flow of Bingham 

fluid, and they found that the distribution of 

nanoparticle fraction is considered as a decreasing 

function in thermophoretic parameter. For more 

details about studies of plastic and pseudoplastic fluids 

combined with peristaltic flow, see Refs. [9-12]. 

     In chemistry and physics, activation energy is the 

energy that must be supplied to a chemical or nuclear 

system of latent reactants lead to a chemical reaction, 

a nuclear reaction, or various other physical 

phenomena. It is denoted by the symbol 𝐸𝑎, and the 

unit kilojoule/mol is used to measure it. The term was 

coined by the Swedish chemist Svante Arrhenius in 

1889 [13]. Shafique et al [14] discretized the 

influences of activation energy on boundary layer flow 

in rotating frame; they found that the activation energy 

is an increasing function in temperature of fluid. 

Gowda et al [15] studied the heat and mass transfer 

effects on boundary layer of non-Newtonian fluid, 

they found that the growing values of the magnetic 

parameter develop the velocity gradient and decays the 

heat transfer. In nearly time, applications of activation 

energy appeared more and more in different fields like 

nuclear reactions in engineering [16], various physical 
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phenomena in physics [17,18] and many applications 

can be found in Refs. [19-23].     

       Numerous of researchers have motivated on 

examining different techniques to improve the fluids 

thermo-physical characteristics. Nanoliquids advance 

the heat transfer phenomenon so that new resourceful 

devices can be intended. These fluids are 

fundamentally collected of suspension of numerous 

kinds of nanoparticles in base fluids. Choi et al. [24] 

studied the thermal conductivity of fluids with 

nanoparticle. Investigational analysis of the 

performance of convective heat transfer of water-

Al2O3 nanoliquid was through by Wen and Abouzeid 

and Ouaf [25] scrutinized the squeezing flow of a non-

Newtonian nanoliquid between two parallel plates. 

The power-law nanoliquid combined with peristaltic 

motion a non-uniform inclined channel was 

deliberated by Eldabe et al. [26]. Recent studies and 

applications of nanofluid combined with blood flow 

can be cited in Ref. [27–32]. 

        The current scientific eagerness is to find new 

numerical, semi-numerical and analytical solutions of 

fluid problems that have a high degree of nonlinearity 

[33-36]. One of the methods that appeared to solve the 

problem of nonlinearity in partial or ordinary 

differential equations is called generalized differential 

transform method, which is shortened to Ms-DTM as 

offered through this manuscript. Differential 

transform method was first introduced in the end of 

last century by Zhou [37], which is defined as a semi-

analytical method for solving nonlinear partial 

differential equations. In early time, Odibat et al [38] 

studied the non- non-chaotic or chaotic systems by 

using a new modified technique that called multi-step 

differential transform algorithm. Furthermore, a large 

number of investigations have proven the 

effectiveness of the DTM and its modification 

techniques, see Refs. [39-42]. In other side, the main 

idea for Ms-DTM is to choose/ divide a suitable 

number of intervals from solution interval, as well as 

make a generalization of resulting differential 

transform series solution. 

       In the present problem, we extend the work of 

Tanveer et al [8] to include activation energy, 

magnetohydromagnetic, mixed convection and non-

Darcian effects. Therefore, the aim of this problem is 

to study the effects of uniform magnetic field and 

viscous dissipation on flow of a Bingham nanofluid in 

a peristaltic tube. Brownian motion and 

thermophoresis effects are taken into consideration. 

By using the assumptions of long wavelength and low-

Reynolds number, series solutions for the axial 

velocity, temperature, microrotation and nanoparticles 

distributions are obtained by using MS-DTM. The 

effects of pertinent parameters of the problem on these 

solutions are analyzed and depicted graphically. 

 

2. Mathematical formulations  

      Peristaltic transport of Bingham nanofluid in a two 

dimensional microchannel is considered. In addition, 

the flow is driven by the magnetic field 𝐵0 along the 

channel with 𝑑, 𝜆 and 𝑐 uniform thickness, wavelength 

and constant speed, respectively (see Fig. 1). 

 
Fig.1. Physical model of problem. 

Equations for wall deformation can be expressed as [8] 

𝑌 = ±𝑎 ± 𝑏 𝑐𝑜𝑠 (
2𝜋

𝜆
(�̅� − 𝑐𝑡̅)) = ±𝐻(�̅�, 𝑡̅)    (1) 

    Where 𝑎, 𝑡 and 𝑏 denote the amplitude, the time and 

the dimensional non-uniformity of the channel, 

respectively. Bingham fluid extra stress tensor is 

defined as: 

𝜏 = −𝑝𝑰 + 𝑺,                                                   (2) 

𝑺 = {
(𝜇�̇� + 𝜏0)𝑨1,              for    𝜏 ≥ 𝜏0

𝑨𝟏 = 0,                         for    𝜏 > 𝜏0 
.         (3) 

       Where, the extra stress tensor represented by 𝑺, 

the pressure 𝑝, the identity tensor 𝑰, 𝑨𝟏  =  𝑔𝑟𝑎𝑑�̅�  +
 (𝑔𝑟𝑎𝑑�̅�)𝑇 is first Rivlin–Erickson tensor, �̅� =
 (�̅�(�̅�, �̅�, 𝑡̅), �̅�(�̅�, �̅�, 𝑡̅), 0) the velocity of fluid, 𝜇 the 

viscosity of the fluid and 𝜏 the yield stress. The 

governing equations of present model given as follows 

[8, 13, 17]: 
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
= 0,                                                      (4) 

𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑥
+ [

𝜕𝑺𝑿𝑿

𝜕𝑋
+

𝜕𝑺𝑿𝒀

𝜕𝑌
] −

𝜌𝑓𝐶𝑠𝑢√𝑈2 + 𝑉2 − (𝜎𝐵0
2 +

𝜈

𝑘
) 𝑈 + (1 −

  𝐶0) 𝜌𝑓𝑔𝛽(𝑇 − 𝑇0) + (𝜌𝑝 − 𝜌𝑓)𝑔𝛽∗(𝐶 − 𝐶0),  

(5) 
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ [

𝜕𝑺𝒀𝑿

𝜕𝑋
+

𝜕𝑺𝒀𝒀

𝜕𝑌
] −

𝜌𝑓𝐶𝑠𝑉√𝑈2 + 𝑉2 −
𝜈

𝑘
 𝑉,                                   (6) 

𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
= −

𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕2𝑇

𝜕𝑋2 +
𝜕2𝑇

𝜕𝑌2) +

𝑺𝑿𝒀

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
) + 𝜏1 [

𝐷𝑇

𝑇𝑚
((

𝜕𝑇

𝜕𝑋
)

2

+ (
𝜕𝑇

𝜕𝑌
)

2

)] +

 𝜏1𝐷𝐵 (
𝜕𝐶

𝜕𝑋

𝜕𝑇

𝜕𝑋
+

𝜕𝐶

𝜕𝑌

𝜕𝑇

𝜕𝑌
),                                      (7) 

𝜌 (
𝜕𝐶

𝜕𝑡
+ 𝑉

𝜕𝐶

𝜕𝑌
+ 𝑈

𝜕𝐶

𝜕𝑋
) = 𝐷𝐵 (

𝜕2𝐶

𝜕𝑋2 +
𝜕2𝐶

𝜕𝑌2) +
𝐷𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑋2 +

𝜕2𝑇

𝜕𝑌2) − 𝐾𝑟
2(𝐶 − 𝐶0) (

𝑇

𝑇0
) exp (

𝐸𝑎

𝑘𝑇
),  (8) 

       Here 𝜌𝑛𝑓, 𝜎𝑛𝑓, 𝑔, 𝐵0,  𝐶 , (𝜌𝐶)𝑛𝑝 and  𝐾𝑛𝑓 

portrays the nanofluid density, the electrical 
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conductivity of fluid, the gravity, the magnetic field, 

the concentration of nanomaterial, the effective heat 

capacity and the thermal conductivity of nanofluid, 

correspondingly. 𝐷𝐵 is the Brownian diffusion 

parameter and 𝑆′𝑖𝑗  extra stress tensor components, 

𝜏1 =
(𝜌𝑐𝑝)

𝑛𝑓

𝜌𝑐𝑝
 represents the ratio of effective heat 

capacity of nanoliquid to heat capacity of the base 

fluid. 

The boundary condition for the momentum equation is 

as follows 
𝜕𝑢

𝜕𝑦
= 0, at 𝑦 = 0 𝑎𝑛𝑑 𝑢 = 0, at 𝑦 = 𝐻(�̅�, 𝑡̅) = 𝑎 +

𝑏 𝑐𝑜𝑠 (
2𝜋

𝜆
(�̅� − 𝑐𝑡̅)),                                                  (9) 

the boundary conditions for temperature and 

nanoparticles concentration equations are formulated 

as: 

𝑇 = 𝑇0 on 𝑦 = 0, 𝑇 = 𝑇1 on 𝑦 = ℎ,                         (10) 

𝐶 = 𝐶0 on 𝑦 = 0, 𝐶 = 𝐶1 on 𝑦 = ℎ.                       (11) 

The following dimensionless parameters are utilized 

[4] 

𝑥 =
𝑋

𝜆
, 𝑦 =

𝑌

𝑑
, 𝑢 =

𝑈

𝑐
, 𝑣 =

𝑉

𝑐𝛿
, 𝛿 =

𝑑

𝜆
, ℎ =

𝐻

𝑑
= 1 +

𝑚𝑥 + 휀 sin 2𝜋(𝑥 − 𝑡) , 𝑝 =
𝑑2

𝑐𝜆𝜇0
, 𝑀 =

√
𝜎𝑛𝑓

𝜇0
𝐵0𝑑, 𝑅𝑒 =

𝜌𝑛𝑓𝑐𝑑

𝜇0
, 𝐸 =

𝑐2

𝐶𝑛𝑓𝑇0
, 𝑃𝑟 =

𝜇0𝐶𝑛𝑓

𝐾𝑛𝑓
, 𝐵𝑟 =

𝑃𝑟𝐸, 𝐺𝑟 =
𝜌𝑛𝑓𝑔(𝑇−𝑇0) 𝑑2 

𝜇0𝑐
, 𝐺𝑐 =

𝜌𝑛𝑓𝑔(𝐶−𝐶0) 𝑑2 

𝜇0𝑐
, 𝑁𝑏 =

𝜏𝐷𝐵(𝐶−𝐶0)

𝜈
, 𝜃 =

(𝑇−𝑇0)

𝑇0
, 𝜑 =

(𝐶−𝐶0)

𝐶0
, 𝑁𝑡 =

𝜏𝐷𝑇(𝑇−𝑇0)

𝜈 𝑇𝑚
′ , 𝑢 =

𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
, 𝐸 =

𝐸𝑎

𝑘𝑇0 
, 𝐹𝑠 = 𝜌𝑓𝐶𝑠 . 

     Here 𝑀 denotes Hartman number, 𝑃𝑟  is Prandtl 

number, Ec Eckert number, 𝜃 is the dimensionless 

temperature, 𝛿  is the wave number, 𝐵𝑟  is Brinkman 

number, 𝑅𝑒 is Reynolds number, 𝑁𝑡 is the 

thermophoresis parameter, 𝑁𝑏 is Brownian motion 

parameter, 𝑅𝑑 is the parameter thermal radiation, 𝐺𝑡 is 

thermal Grashoof number, 𝐺𝑟is concentration 

Grashoof number and 𝜑 is the dimensionless 

concentration. The simplified non dimensional 

equations are expressed as: 
𝜕𝑝

𝜕𝑥
=

𝜕𝑆𝑥𝑦

𝜕𝑦
− 𝐹𝑠 (

𝜕𝜓

𝜕𝑦
+ 1)

2

− (𝑀2 +
1

𝐷𝑎
) (

𝜕𝜓

𝜕𝑦
+ 1) +

𝐺𝑟  𝜃 + 𝐺𝑐  𝜑,                                         (12) 
𝜕𝑝

𝜕𝑦
= 0,                                                                    (13) 

𝜕2𝜃

𝜕𝑦2 + 𝐵𝑟𝑆𝑥𝑦
𝜕2𝜓

𝜕𝑦2 + 𝑃𝑟  𝑁𝑡 (
𝜕𝜃

𝜕𝑦
)

2

+ 𝑃𝑟  𝑁𝑏
𝜕𝜃

𝜕𝑦
 
𝜕𝜑

𝜕𝑦
−

𝜎2𝐵0
2 (

𝜕𝜓

𝜕𝑦
+ 1)

2

,                                                    (14) 

𝑁𝑏
𝜕2𝜑

𝜕𝑦2 + 𝑁𝑡
𝜕2𝜃

𝜕𝑦2 − 𝜉(𝜌𝜃 + 1)𝜑 𝑒
−𝐸

(𝜌𝜃+1) = 0,          (15) 

Where 𝑆𝑥𝑦 = (
𝜏0

𝜕2𝜓

𝜕𝑦2

+ 𝜇)
𝜕2𝜓

𝜕𝑦2                                    (16) 

    By eliminating the pressure gradient from equations 

(9) and (10), we have 

𝜕2

𝜕𝑦2 (
𝜏0

𝜕2𝜓

𝜕𝑦2

+ 𝜇)
𝜕2𝜓

𝜕𝑦2 − 𝐹𝑠
𝜕

𝜕𝑦
(

𝜕𝜓

𝜕𝑦
+ 1)

2

− 𝑀2 𝜕2𝜓

𝜕𝑦2 +

𝐺𝑟  
𝜕𝜃

𝜕𝑦
+ 𝐺𝑐

𝜕𝜑

𝜕𝑦
,                                          (17) 

With associated boundary conditions 

𝜓 = 0,
𝜕2𝜓

𝜕𝑦2 = 𝜏0, 𝜃 = 0, 𝜑 = 0 𝑎𝑡 𝑦 = 0                 (18) 

𝜓 = 0,
𝜕𝜓

𝜕𝑦
= 0, 𝜃 = 1, 𝜑 = 1 𝑎𝑡 𝑦 = ℎ = 1 +

𝑎 𝐶𝑜𝑠(2𝜋𝑥)                                                    (19) 

3. Method of solution 

     We applied Ms-DTM in the present manuscript to 

solve the system of differential equations (14), (15) 

and (17) with appropriate boundary conditions (18) 

and (19). A semi-analytical solutions of differential 

equation can be obtained by Ms-DTM with chosen 

domain. In the first steps of solution to a differential 

equations system, we find out the solution using DTM 

technique. The next step, we make a generalization for 

the solutions obtained to treat deficiencies caused by 

the differential transform method.  

    Finally, the main improvement of the Ms-DTM is 

that it could be applied straight to highly non-linear 

systems of differential equations deprived of needful 

to perturbation/linearization, or other restrictive 

assumptions. 

The general nth order ordinary differential equation can 

be written as  

𝑦(𝑡, 𝑓, 𝑓′, . . . , 𝑓⁽ⁿ⁾) = 0.                               (20) 

This equation is subjected to the initial guess 

𝑓(𝑘)(0) = 𝑑𝑘, 𝑘 = 0, . . . , 𝑛 − 1.                            (21) 

Let 𝑓(𝑡) be analytic in a domain 𝐷 and let 𝑡 = 𝑡₀ 

represent any point in 𝐷. The 𝑘𝑡ℎ derivative 

transformation of a function 𝑓(𝑡) can be defined as 

follows: 

𝐹(𝑘) = (
1

𝑘!
) [(

𝑑(𝑘)𝑓(𝑡)

𝑑𝑡(𝑘) )]
(𝑡=𝑡0)

, ∀𝑡 ∈ 𝐷.                (22) 

 

4. Results and discussion 

 

     By using the assumption of long wavelength and 

small Reynolds number in our problem, we analysed 

the entering parameters effects on the problem 

physical quantities, i.e., we assumed that the parameter 

𝛿 is very small and more less than unity; moreover, we 

take the values of pertinent parameters as 𝑀 =
0.7, Da = 0.4, 𝐸 = 2, 𝜏0 = 0.1, μ = 0.3, Fs =
0.3, 𝐺𝑡 = 1, 𝐺𝑐 = 1, Br = 1, Pr = 1, Nt = 0.2, Nb =
0.4, ρ = 0.1. Figs. (2) and (3) give the effects of the 

activation energy E and the yield stress τ0 on the axial 

velocity u, respectively. Equation (12) with the help of 

(21) and (22) is evaluated with x = 0.3 and the axial 

velocity is plotted versus the transverse coordinate y 

in these figures. It is seen from Figs. (2) and (3), that 

the axial velocity increases with the increasing of E, 

whereas it decreases as τ0 increases in the interval y ∈ 
[0, 0.42]; otherwise, it decreases by increasing E and 

increases as τ0 increases. Therefore, the behaviour of u 
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in the interval y ∈ [0, 0.42] is opposite to its behaviour 

in the interval y ∈ [0.42, 1.3]. It is also noted that the 

axial velocity for different values of E and τ0 becomes 

greater near the upper wall of the tube and has a 

maximum value after which it decreases. Moreover, 

the obtained curves don’t intersect at the axial of tube, 

this is due to the boundary conditions given in (18). 

The effects of M and 𝜇 on the axial velocity are found 

to be similar to the effect of E given in Fig. (2), with 

the difference that the obtained curves are very close 

to those obtained in Fig. (2). Moreover. the effects of 

the other parameters are found to be similar to them; 

these figures are excluded here to save space. 

Furthermore, the result in Fig. (7) agrees with those 

obtained by [43-44]. 

    Eq. (14) evaluates how the temperature distribution 

T varies with the transverse coordinate y. The effects 

of both Forschheimer number Fs and temperature 

Grashof number GT on the temperature T are shown in 

figures (4) and (5), respectively. It is found that the 

temperature increases by increasing Fs, but it 

decreases by increasing GT. Furthermore, the 

temperature is always positive and for large values of 

GT, it decreases with y till a minimum value of y, after 

which it increases. 

Fig. 2. 

 
Fig. 3. 

      

 

 
Fig. 4. 

 

 
Fig. 5. 

 
Fig. 6. 

 
Fig. 7. 

    Physically, the result in Fig. (5) is due to the 

following:  The indication of Grashof number is that 

it represents the ratio between the buoyancy force due 

to spatial variation in fluid density, which is caused by 
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temperature distinction, to the inhibiting force due to 

fluid viscosity; this will lead to a reduction in fluid 

temperature. 

     Brownian motion is an indiscriminate flow 

of particles annotated in a fluid . This random transport 

agrees with the fact that the nanoparticles 

concentration increases or decreases with Brownian 

motion parameter. The effects of nanoparticles 

Grashof number Gf and Brownian motion parameter 

Nb on the nanoparticles concentration f which is a 

function of the transverse coordinate y are shown in 

Figs. (6) and (7), respectively. It is shown that the 

nanoparticles concentration increases as Gf increases, 

whereas it decreases by increasing Nb. Moreover, the 

nanoparticles concentration increases with y for large 

values of GT, till a maximum value (at a finite value of 

y: y=y0) after which it decreases. It is clear that the 

maximum of f increases by increasing GT. In addition, 

the result in Fig. (7) agrees with those obtained by 

[45]. The effect of other parameters is found to be 

similar to the effect of both GT and Nb on f, but the 

figures will not be given there to save space. 

          Trapping is treated as an interesting 

phenomenon related with peristaltic motion. Trapping 

occurs only in particular situation which is represented 

graphically by a large capacity ratio. The family of 

streamlines are specified as a fluid bolus. This bolus 

moves with the wave in the laboratory scope. There 

are an inner streams which can be determined inside 

the bolus. However, all the included fluid particles 

transfer with a mean velocity equalizing to the wave 

speed [46].   

     The spreading and size of the trapped bolus are 

shown in Figs. (8) and (9). These figures are depicted 

to reflects the advantages of the thermophoresis 

parameter Nt and magnetic parameter M on the 

streamlines. It is clear from these figures that the bolus 

consists of two counter – rotating vortices. In addition, 

the bolus size increases with the increase of Nt, while 

it decays in size with an enlarge in the value of the 

magnetic parameter M. The result in Fig. (9) is due to 

resistive force which is called Lorentz force. 

Therefore, the fluid moves slowly. That leads to 

reduce the size of bolus. This observed behavior 

agrees with the behavior noticed by [46]. 

 

 

     

Fig. (8) 

        
 

Fig. (9) 

 

https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Fluid
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5.  Conclusion 

     In our analysis, we extend the work of Tanveer et 

al [8]. So, the activation energy and viscous 

dissipation effect on the peristaltic flow of MHD 

Bingham nanofluid through a non-Darcy porous 

media has been analyzed. A semi-analytical 

expressions are constructed for the axial velocity, 

temperature, nanoparticles concentration 

distributions. Many physiological flows can be 

interpreted by this model. The major findings can be 

briefed as follows: 

(1) The axial velocity u increases or decreases as of 

Br, E, Fs and Da, whereas it has an opposite 

behavior with each of  𝜏0, Gc and Gt. 

(2) the axial velocity u becomes greater with 

increasing the transverse coordinate y and 

reaches maximum value (at a finite value of y :y 

= y0) after which it decreases. 

(3) The temperature T for different values of Nb, Nt, 

Fs and 𝜏0 increases, while, it decreases as both 

Gt and Gc increase. 

(4) The nanoparticles concentration C has an 

opposite behavior compared to temperature 

behavior except that it has the same behavior at 

the channel boundary. 
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