Synthesis and Applications of Pyridazinones for Base Oil Improvement

S.A. Rizk ${ }^{1}$, S.K. Attia ${ }^{2}$, Doaa I. Osman ${ }^{2}$ and M.I. Nessim ${ }^{2 *}$
${ }^{1}$ Chemistry Department Department, Faculty of Science, Ain Shams University and ${ }^{2}$ Egyptian Petroleum Research Institute, Evaluation and Analysis Department, Cairo, Egypt.

Abstract

TTHREE pyridazinone derivatives of the type 4,5dihy dropy ridazin- $3(2 \mathrm{H}$)-ones, N -(4-(6-oxo-5- ($(5-\mathrm{pheny}$ 1-1,3,4-thiadiazol-2-yl)amino) - 1,4,5,6 - tetrahy dropyridazin - 3-yl) phenyl) acetamide (4a), 6-(4-chlorophenyl)-4-((5-phenyl-1,3,4-thiadiazol-2-yl)amino)-4,5-di-hydropyridazin-3 (2H)-one (4b) and 6-(4bromophenyl) -4- ((5-phenyl-1,3,4-thiadiazol-2-yl) amino)-4,5-dihydropyridazin- $3(2 H)$-one (4c) were synthesized. They were characterized by the conventional tools of analysis, Elemental analysis, IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. The tools of analysis confirmed the structure of the three prepared compounds. These heterocyclic compounds are chemically stable and possess multi actions for base oil improvement. They are tested as antioxidants for local base oil through the change in total acid number (TAN). They gave good results as antioxidants for base oil. Also these three synthesized compounds are tested as corrosion inhibitors for carbon steel in acid medium. The efficiency order for these tested compounds is ranked as follows: $4 a>4 b>4 c$. Energy of the highest occupied molecular orbital ($\mathrm{E}_{\mathrm{HOMO}}$) and lowest unoccupied molecular orbital ($\mathrm{E}_{\mathrm{LUMO}}$) for the three prepared compounds were calculated via the Ab initio method. Studying of the quantum chemical calculations of the synthesized compounds showed good matching with the experimental results.

Keywords: Pyridazinones, Imidazole, Thiadiazole, Antioxidant, Anticorrosion, Quantum chemical calculations.

Lubricating oils are subjected to deterioration by oxidation at high temperatures [1]. Antioxidants are the main additives that protect the lubricant from oxidative degradation, and be allowing the oil to meet the challenging supplies for use in industrial applications [2]. In order to see the technical economic and environmental requirements, sulfur and phosphorus content are used in the design of lubricating oil with low concentration [3,4]. The compact structure of heterocyclic compounds, lead to possess antioxidant, anticorrosion and anti-wear properties [5-7]. Some functionalized imidazo les and 1,2,4-triazoles are tested as antioxidant additives for industrial lubricating oils [8]. The results explained,

[^0]based on correlating the electron donating and withdrawing abilities of the substituents with the oxidation stability.

Otherwise, the aroyl-prop-2-enoic acids have two electrophilic reactions sites. The reactivity of them toward aromatic hydrocarbon, (under Friedel-Crafts condition), and nitrogen nucleophiles, (under Michael addition) were investigated [9-12]. Because of the stability of the intermediate carbocation they behave as α, β-unsaturated carbonyl rather than α, β-unsaturated acid. The azaMichael adducts are considered as α-amino acids. They have recognized to show a significant role in the synthesis of novel drug applicants [13-19]. Synthesis of unnatural amino acids is found out cost effective and less time consuming synthetic routes. From this point of view the authors have made an attempt to investigate the reaction of 4-aryl-4-oxo-but-2-enoic acids with 2-amino-1,3,4thiadiazo le, under aza-Michael reaction conditions, which produced adducts as α-amino acid types with acetic anhydride at different conditions and $\mathrm{N}_{2} \mathrm{H}_{4}$ to give the corresponding furanone, imidazol[2,3-b]1,3,4-thiadiazole, 1,3,4thiadiazo lopyrimidines and pyridazin-one derivatives, respectively. The 2-(3H) furanone compounds showed important activities as antio xidants. Beside, they are active as antifungal, antibacterial, antiv iral, anti-inflammatory, vasodilation, and anticonvulsant [20-25]. Pyridazinone derivatives incorporated with diazole moieties that exhibit biological activity agents, (Emorfazone and related compounds) [26], for therapeutic intervention of renal urologic [27], respiratory (NIP-502) [28] and dermatologic diseases (FR-1818177) [29] and pyridazinone, (PDE inhibitor developers) [30]. The design of newly prepared co mpounds based on the structure containing other biological actives heterocycles on the side chains [31]. In our work we used the prepared compounds as antioxidants and corrosion inhibitors for base oil improvement.

Experimental

Preparation of additives

All melting points are approximately correcteded and were determined on a Stuart electric melting point apparatus. Elemental analysis was carried out at the Micro analytical Centre, National Research Centre, Giza, Egypt, by El Germany Viro El Microanalys is, IR spectra (KBr) were recorded on infrared spectrometer FT-IR 400D using OMNIC program and are reported frequency of absorptions in terms of cm^{-1} and ${ }^{1} \mathrm{H}$-NMR spectra recorded on a Bruker spectro photometer at 400 MHz using TMS as internal standard and with residual signals of the deuterated solvent $=7.26 \mathrm{ppm}$ for CDCl_{3} and 2.51 ppm for DMSO- $d_{6} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on the same spectrometer at 125 MHz MHz and referenced to solvent signals $=77 \mathrm{ppm}$ for CDCl_{3} and 39.50 ppm for DMSO- d_{6}. DEPT 135 NMR spectroscopy were used where appropriate to aid the assignment of signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra. The mass spectra were recorded on Shimadzu GCMS-QP-1000 EX mass spectrometer at 70 e.v. using the electron ionization technique Homogeneity of all co mpounds synthesized was checked by TLC.

Synthesis of the adducts

A solution of 4-aryl-4-oxo-2-butenoic acids (0.01 mol .) and 5-aryl-2-amino-1,3,4-thiadiazole (0.016 mol .) in 30 ml ethanol was refluxed for 3 h . The crude product was washed by petroleum ether $\left(40-60^{\circ} \mathrm{C}\right)$, and then crystallized from the proper solvent to give the following compounds:

4-(4-Acetylaminophenyl)-4-oxo-2-(5-phenyl-2-thiadiazolylamino) butanoic acid (1a)

Yield 80%, m.p. $160-162{ }^{\circ} \mathrm{C}$, IR for CO for acid and ketone groups ($1695-$ 1665) $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) 2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.4$ ($2 \mathrm{dd}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$ $J=15.2, \mathrm{~J}=7.7$, diastereotopic protons), 4.2 (dd, $\mathrm{CH}-\mathrm{COOH}$, methine proton), $6.7(\mathrm{~s}, \mathrm{NH}), 7.6-8.1(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}), 8.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{O}-\mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right), \delta 22.3\left(\mathrm{CH}_{3}\right), 48.1\left(\mathrm{CH}_{2} \mathrm{COAr}\right), 72.3$ ($\underline{C} H C O O$), $108\left(\mathrm{C}_{1} \mathrm{Ar}\right), 114.5120 .3\left(\mathrm{C}_{4} \mathrm{Ph}\right), 123.2\left(\mathrm{C}_{2,6} \mathrm{Ph}\right), 127.2\left(\mathrm{C}_{3,5} \mathrm{Ph}\right)$, 130.4 $\left(\mathrm{C}_{1} \mathrm{Ph}\right)$, $132.1\left(\mathrm{C}_{3,5} \mathrm{Ar}\right)$, $136.3\left(\mathrm{C}_{2,6} \mathrm{Ar}\right)$, $143.2\left(\mathrm{C}_{4} \mathrm{Ar}\right)$, $156.2(\mathrm{SC}=\mathrm{N}), 168.2$ (CONH), $171.2(\mathrm{NHC}=\mathrm{N}), 173.5(\mathrm{COO}), 190.30(\mathrm{CO}-\mathrm{Ar}) . \mathrm{MS}: m / z 410\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right)$: \% C 58.53, H 4.39, N 13.65, S 7.8; Found: \% C 58.30, H 4.31, N 13.00, S 7.43 .

4-(4-Chlorophenyl)-4-oxo-2-(5-phenyl-2-thiadiazolylamino) butanoic acid (1b)
Yield 80%, m.p. $140-142{ }^{\circ} \mathrm{C}$, IR for CO for acid and ketone groups (1695) $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) 3.5\left(2 \mathrm{dd}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}, J=15.2, J=7.7\right.$, d iastereotopic protons), 4.2 (dd, $\mathrm{CH}-\mathrm{COOH}$, methine proton), $6.7(\mathrm{~s}, \mathrm{NH}$), 7.6-8.1 (m, 9H, ArH), $8.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$, EIMS: $m / z 390\left(\mathrm{M}^{+}+2\right), 387.5\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SCl}\right): \% \mathrm{C} 55.22$, H 3.64, N 10.85, S 8.26, Cl 9.17; Found: \% C 55.00, H 3.20, N 10.54, S 8.00, Cl 8.87.

4-(4-Bromophenyl)-4-oxo-2-(5-phenyl-2-thiadiazolylamino) butanoic acid (1c) Yield 80%, m.p. $128-130^{\circ} \mathrm{C}$, IR for CO for acid and ketone groups (1693) cm^{-1},
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) 3.5 ($2 \mathrm{dd}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O} \quad J=15.2, \quad J=7.7$, diastereotopic protons), 4.2 (dd, CH-COOH, methine proton), 6.7(s, NH), 7.6-8.1 (m, 9H, Ar$\mathrm{H}), 8.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$, EIMS: $m / z 435\left(\mathrm{M}^{+}+2(2)\right), 431\left(\mathrm{M}^{+}\right)$. Anal. Calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}\right): \% \mathrm{C} 50.01, \mathrm{H} 3.26$, Br 18.33 , N 9.74, S 7.42; Found: \% C 49.37, H 3.00, Br 18.09, N 9.53, S 7.11 .

Synthesis of furanones 2 and imidazothiadiazole derivatives 3

A mixture of la-c (0.005 mol .) and acetic anhydride (9.4 mL) was heated under reflux for 1 h upon water bath. The solid that separated, on cooling, was fractional crystallized from petroleum ether (80-100 $\left.\quad{ }^{\circ} \mathrm{C}\right)$ afforded imidazothiadiazoles 3 and from dioxane afforded the furanone derivatives 2 .

2-(5-Acetylaminophenyl-2-oxo-furan-3-yl)amino-5-phenyl-1,3,4-thiadiazole (2a)

Yield 50%, m.p. $200-202{ }^{\circ} \mathrm{C}$, IR: v $\square \square \mathrm{NH} 3297-3100$, CH 3055-2890, and CO at 1767 and $1693 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$-NMR spectrum (DMSO- d_{6}) exhibits signals at δ

2,1 ($\mathrm{s} 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), $4(\mathrm{dd}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{NH}, J=8.5), 6.7(\mathrm{bs}, \mathrm{NH}), 7.5-7.9(\mathrm{~m}, 9 \mathrm{H}$ of Ar), $6.9(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$ furanone moiety, $J=8.5), 12.7(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}=\mathrm{O}-\mathrm{NH})$ acidic protons are exchangeable in $\mathrm{D}_{2} \mathrm{O}$. Elem. Anal. For $\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right)$ M.wt. 392.43: Calc.: \% C 61.21, H 4.11, Cl 9.60, N 14.28, S 8.17; Found \% C 60.40, H 3.87, Cl 9.11, N 13.80, S 7.89.

2-(5-Chlorophenyl-2-oxo-furan-3-yl)amino-5-phenyl- 1,3,4-thiadiazole (2b) Yield 50%, m.p. 182-184 ${ }^{\circ} \mathrm{C}$, IR: v $\square \mathrm{CH} 3055-2890$ and CO at $1772 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR spectrum (DMSO- d_{6}) exh ibits signals at $\delta 4$ (dd, $1 \mathrm{H},-\mathrm{CH}-\mathrm{NH}, J=8.5$), 6.7 (bs, NH), 7.5-7.9 (m, 9H of Ar), 6.9 (d, 1H, CH furanone moiety, $J=8.5$). Elem. Anal. for $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}\right)$: Calc.: \% C 58.46, \% H 3.27, \% N 11.36, \% S 8.67; Found \% C 58.20, \% H 3.00, \% N 10.90.8, \% S 8.20.

2-(5-Bromophenyl-2-oxo-furan-3-yl)amino-5-phenyl- 1,3,4-thiadiazole (2c) Yield 50%, m.p. $166-168{ }^{\circ} \mathrm{C}$, IR: v $\square \square \mathrm{CH} 3055-2890 \mathrm{~cm}^{-1}$, and CO at $1770 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (DMSO- d_{6}) exh ibits signals at $\delta 4$ (dd, $1 \mathrm{H},-\mathrm{CH}-\mathrm{NH}, J=8.5$), 6.7 (bs, NH), 7.5-7.9 (m, 9H of Ar), $6.9(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$ furanone mo iety, $J=8.5) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \quad$ DMSO- d_{6}), $\delta 71.4$ (ㄷHCOfur), 112.3 ($\mathrm{C}_{1} \mathrm{Ar}$), 115.2 $120.3\left(\mathrm{C}_{4} \mathrm{Ph}\right), 126.1\left(\mathrm{C}_{2,6} \mathrm{Ph}\right), 127.3\left(\mathrm{C}_{2,6} \mathrm{Ar}\right), 128.2\left(\mathrm{C}_{3,5} \mathrm{Ph}\right), 129.7\left(\mathrm{C}_{1} \mathrm{Ph}\right), 131.1$ $\left(\mathrm{C}_{3,5} \mathrm{Ar}\right), 139.2\left(\mathrm{C}_{4} \mathrm{Ar}\right), 144.3$ (=CHfur), 149.3(C fur), $154.2(\mathrm{SC}=\mathrm{N}), 169.5$ (COfur), $170.2(\mathrm{NHC}=\mathrm{N})$. Elem. Anal. for $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}\right)$. M wt 414: Calc.: \% C 58.20, H 3.80, Br 19.08, N 8.40, S 6.60,; Found \% C 58.00, H 3.52, Br 18.87, N 8.11, S 6.23.

5-(4-Acetylaminobenzoylmethyl) -2-phenyl-4 -oxoimidazolo [2,1-b]-1,3,4 thiadiazole (3a)
m.p. $130-132^{\circ} \mathrm{C}$, yield 35%, IR: v $\mathrm{C}=\mathrm{O}$ are at 1695 and $1669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) exhibits signals at $3.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right.$), 3.4 ($2 \mathrm{dd}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}, J=7.7$) (diastereotopic protons), 3.9 (dd, CH-imidazo, methine proton), 7.2-7.7 ($\mathrm{m}, 9 \mathrm{H}$, ArH), 11.2 (s, 1H, NH, exchangeable by $\mathrm{D}_{2} \mathrm{O}$). Elem. Anal. For $\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\right)$ M.wt. 392: Calc.: \% C 61.21, \% H 4.11, \% N 14.28, \% S 8.17; Found \% C 61.00, \% H 3.95, \% N 14.00, \% S 7.92. The EI-MS shows the molecular ion peak at $\mathrm{m} / \mathrm{e} 395,392$ corresponding to $(\mathrm{M}+2)^{+}$and $\left(\mathrm{M}^{+}\right)$respectively.

5-(4-Chlorobenzoylmethyl)-2-phenyl-4-oxoimidazolo [2,1-b]-1,3,4 thiadiazole (3b)
m.p. $142-144^{\circ} \mathrm{C}$, yield 35%, IR: v $\mathrm{C}=\mathrm{O}$ are at 1691 and $1668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) exhibits signals at 3.31 ($2 \mathrm{dd}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}, J=7.7$) (diastereotopic protons), 4.11 (dd, $\mathrm{CH}-\mathrm{COOH}$, methine proton), 7.6-7.9 (m, 9H, ArH)). Elem. Anal. for $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{M}$ wt 369.5: Calc.: \% C 58.46, H 3.27, Cl 9.60, N 11.36, S 8.67; Found \% C 58.20, H 3.00, Cl 9.28, N 10.90.8, S 8.20. The EI-MS shows the mo lecular ion peak at m/e 371,369 corresponding to $(\mathrm{M}+2)^{+}$and $\left(\mathrm{M}^{+}\right)$ respectively.

```
5-(4-Bromobenzoylmethyl)-2-phenyl-4-oxoimidazolo [2,1-b]-1,3,4 thiadiazole (3c)
m.p. \(136-138^{\circ} \mathrm{C}\), yield \(35 \%\), IR: v \(\mathrm{C}=\mathrm{O}\) are at 1701 and \(1672 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\) (DMSO- \(d_{6}\) ) exhibits signals at 3.21 ( \(2 \mathrm{dd}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}, J=7.7\) ) (d iastereotopic protons), 3.95 (dd, \(\mathrm{CH}-\mathrm{COOH}\), methine proton), 7.5-7.9 (m, 9H, ArH)). Elem. Anal. for \(\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}\right)\). M wt 413: Calc.: \% C 58.2, H 3.8, Br 19.08, N 8.4, S 6.6; Found \% C 58.4, H 3.5, Br 19.67, N 8.1, S 6.2.The EI-MS shows the molecular ion peak at m/e 415, 413 corresponding to \((\mathrm{M}+2)^{+}\)and \(\left(\mathrm{M}^{+}\right)\) respectively.
```

Synthesis of pyridazinone derivatives ($4 a-c$).
An equimolar mixture of 1a-c or 2a-c and hydrazine hydrate was refluxed in ethanol for 3 h and the solid separated out was filtered off, dried and crystallized from absolute ethanol.

N-(4-(6-oxo-5-((5-phenyl-1,3,4-thiadiazol-2-yl)amino)-1,4,5,6-tetrahydropyridazin-3yl) phenyl)acetamide (4a)

Yield 75%, IR (KBr) v $\mathrm{C}=\mathrm{O}$ of 1674,1708 and (NH) of $3177 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.7\left(2 \mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{N}\right)$, $4.2(2 \mathrm{dd}, \mathrm{CH}$, methine proton) 6.7 (s, NH, NH of thiadiazole moiety), 7.43-7.81 (m, 9H, Ar-H), 10.26, 11.59 (brs, $2 \mathrm{H}, \mathrm{NH}$ of acetamido and pyridazinone moieties). EIMS: m/z: 406 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}: \% \mathrm{C} 59.11$, H 4.46, N 20.69, S 7.88; Found: \% C 59. 20, H 4.43, N 20. 10, S 7. 34.

6-(4-Chlorophenyl)-4-((5-phenyl-1,3,4-thiadiazol-2-yl)amino)-4,5
dihydropyridazin -3(2H)-one (4b)
Yield 80%, IR (KBr) v $\mathrm{C}=\mathrm{O}$ of 1708 and (NH) of $3177 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): $\delta 3.7$ ($2 \mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{N}$), 4.2 ($2 \mathrm{dd}, \mathrm{CH}$, methine proton) 6.7 (s, NH, NH of thiadiazole moiety), $7.43-7.81$ (m, 9H, Ar-H), 11.59 (brs, 1H, NH pyridazinone mo ieties). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}), $\delta 54.21\left(\mathrm{CH}_{2}\right.$ py $), 71.4$ ($\underline{C H C O p y}$), $121.3\left(\mathrm{C}_{1} \mathrm{Ar}\right), 127.3\left(\mathrm{C}_{4} \mathrm{Ph}\right), 128.1\left(\mathrm{C}_{2,6} \mathrm{Ph}\right), 129.3\left(\mathrm{C}_{2,6} \mathrm{Ar}\right), 129.7$ $\left(\mathrm{C}_{3,5} \mathrm{Ph}\right)$, $131.7\left(\mathrm{C}_{1} \mathrm{Ph}\right)$, $132.1\left(\mathrm{C}_{3,5} \mathrm{Ar}\right)$, 137.2 ($\left.\mathrm{C}_{4} \mathrm{Ar}\right)$, 147.2 (C py), 153.2 $(\mathrm{SC}=\mathrm{N}), 166.5(\mathrm{COpy}), 170.6(\mathrm{NHC}=\mathrm{N})$. Anal. Calcd. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClN}_{5} \mathrm{OS} . \mathrm{M}$ wt 383.5: \% C 58.81, H 4.13, Cl 9.25, N 18.25, S 8.34; Found: \% C 58.60, H 4.00, Cl 9.01, N 18.04, S 8.12.

6-(4-Bromophenyl) -4-((5-phenyl -1,3,4 -thiadiazol -2-yl) amino)-4,5 dihydropyridazin-3(2 H)-one (4c)

Yield 70%, IR (KBr) v $\mathrm{C}=\mathrm{O}$ of 1702 and (NH) of $3132 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.6\left(2 \mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{N}\right), 4.2(2 \mathrm{dd}, \mathrm{CH}$, methine proton) 6.7 (s, NH, NH of thiadiazole moiety), 7.43-7.81 (m, 9H, Ar-H), 12.09 (brs, 1H, NH pyridazinone moieties). EIMS: m/z: $429\left(\mathrm{M}^{+}+2\right), 427\left(\mathrm{M}^{+}\right)$. Anal. Calcd. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrN}_{5} \mathrm{OS}: \% \mathrm{C} 57.21, \mathrm{H} 3.82$, Br 18.50 , N 16.39, S 7.49; Found: \% C 57.00, H 3.60, Br 18.24, N 16.13, S 7.19 .

Physicochemical properties of the base stock
The tested base stock was delivered from Co-operative Petroleum Company, Cairo, Egypt. The physicochemical characteristics of the base stock are tabulated in Table 1, showed that wax content 0.86%, total Sulfur 0.36%, carbon residue 0.75%, total acid number $0.07 \mathrm{mg} \mathrm{KOH} /$ gram sample Viscosity 7.42 cSt at $100^{\circ} \mathrm{C}$, has high flash point $221^{\circ} \mathrm{C}$ and it has low pour point $-3^{\circ} \mathrm{C}$. The oxidation test methods were carried out according to the standard test method ASTM D- 943.

TABLE 1. Base Stock properties.

Test	Result	Standard Test Method
Density at $15.56{ }^{\circ} \mathrm{C}, \mathrm{g} / \mathrm{cm}^{3}$	0.8818	ASTM D - 1298
Pour Point, ${ }^{\mathrm{O}} \mathrm{C}$	-3	ASTM D -97
Viscosity at $40{ }^{\circ} \mathrm{C}$ at $100^{\mathrm{O}} \mathrm{C}$	52.34	ASTM D - 445
Viscosity Index (VI)	7.42	92
Total Acid Number (TAN)	0.07	ASTM D - 2270
Sulfur Content, wt \%	0.36	ASTM D - 664
Color	2.5	ASTM D - 4294
Ash Content, wt \%	0.003	ASTM D - 1500
Copper Corrosion	1 a	ASTM D - 482
Flash Point, ${ }^{\circ} \mathrm{C}$	221	ASTM D - 130
Aniline Point	100.6	ASTM D -92

Corrosion inhibitor study

1.0 M HCl solution is prepared by dilution of $37 \% \mathrm{HCl}$ A.R. grade with distilled water and the examined inhibitors is $0.025-0.075 \mathrm{mmol} \mathrm{dm}^{-3}$. The composition of carbon steel bar presented in Table 2.

TABLE 2. Carbon steel composition in wt. \% .

Element	$\mathbf{S i}$	\mathbf{C}	$\mathbf{M n}$	\mathbf{P}	\mathbf{S}	$\mathbf{C u}$	$\mathbf{N i}$	$\mathbf{C r}$	$\mathbf{A l}$	$\mathbf{M o}$	\mathbf{V}
$(\mathrm{wt} . \%)$	0.22	0.09	1.52	0.01	0.05	0.02	0.04	0.02	0.04	0.004	0.002

Electrochemical measurements

Electrochemical measurements are performed with a traditional threeelectrode cell using Volta lab 40 (Tacussel-Radiometer PGZ402) potentiostat controlled by Tacussel corrosion analysis software (model: Voltamaster 4) under static condition. All experiments are performed at $25{ }^{\circ} \mathrm{C}$. Potentiodynamic polarization measurements have been achieved by changing the electrode from -700 to -400 mV versus SCE. The inhibition efficiency percentage ($\eta_{\mathrm{p}} \%$) was calculated using the following equations:

$$
\eta_{\mathrm{p}} \%=\left(1-I / I_{\mathrm{o}}\right) \times 100,
$$

where I_{0} and I are the corrosion current densities in the absence and presence of the inhibitor, respectively.

Results and Discussion

Chemistry

The authors reported the behavior of 4-aryl-4-o xo-but-2-enoic acids (1) that were permitted to react with novel nitrogen nucleophile e.g. 2-amino-5-phenyl-1,3,4-thiadiazole in boiling ethanol (neutral medium) afforded the aza-Michael products 4-(4-acetylamino/chloro/bromophenyl)-2-(5-phenyl-1,3,4thiadiazol-2yl) amino-4-o xo-butan-oic acids (1). The 2-aminothiadiazole derivative could be synthesized from treatment of aromatic acid with thiosemicarbazide in the presence of POCl_{3} under reflux 0.5 h (Scheme 1).

Scheme 1.

The recent efforts made for the development of new ascorbic acid analogues in obtaining antioxidant [16-20], antitumor [21] agents have resulted $2(3 \mathrm{H})-$ furanones as a new anti-inflammatory and antioxidant agents [20]. Some 3,5diaryl $2(3 \mathrm{H})$ furanone possess significant anti-inflammatory and antio xidant activities. So, the current work describes the synthes is of $2(3 \mathrm{H})$-furanone with expected anti-antio xidant activity [2,5] yielded the corresponding furanone 2 that is confirmed chemically by interaction with hydrazine hydrate to afford the corresponding pyridazinone 4 (Scheme 2). Moreover, the another product could be isolated imidazolo [2,1-b] 1,3,4-thiadiazole derivative. There may be a competitive reaction in dehydration followed by cyclization via route [i] carboxy lic group within enol of the aroyl group afford ing the foranone 2 and/or via route[ii] carbo xy lic group within imino of the thioguanidino group affording imidazolothiadiazole derivative 3(Scheme 2).

When the acids 1 and their furanone were submitted to react with hydrazine hydrate in boiling ethanol, afforded pyridazin-3-(2H)one 4 (Scheme 3). It's well-known and found out the important the 6 -aryl pyridazin- $3(2 \mathrm{H}$)-one in
medicinal fields [22-28]. The newly route apply and study the target compounds in petro chemistry as antioxidant, and anti-corrosion additives. In addition to study some characterization of substituent group effect upon the active site of pyridazinone nucleus (Scheme 3).

Scheme 2.

Scheme 3.
where: $\mathrm{R}=\mathrm{NHCOCH}_{3}$, N -(4-(6-o xo-5-((5-phenyl-1,3,4-thiadiazol-2-y l)amino)-1,4,5,6-tetrahydropyridazin- 3-yl)phenyl)acetamide (4a).
$\mathrm{R}=\mathrm{Cl}, \quad 6$-(4-Chlorophenyl)-4-((5-phenyl-1,3,4-thiadiazol-2-yl)amino)-4,5-dihydropyridazin- $3(2 \mathrm{H}$)-one (4 b).
$\mathrm{R}=\mathrm{Br}, \quad 6$-(4-Bromophenyl)-4-((5-phenyl-1,3,4-thiadiazol-2-yl)amino)-4,5-dihydropyridazin-3(2H)-one (4c).

Estimation of the synthesized compounds (4a-c) as antioxidants for base stock

Effect of compounds 4a-c on Total Acid Number (TAN) on base stock
The oxidation process of engine lubricants progressed by two mechanisms, namely oxidation and thermal decomposition. Mineral oil is very complex in nature due to the presence of large range of molecular types and functional groups. This complex structure makes the oxidation reactions extremely hard to understand. The test is carried out at $24,48,72$ and 96 hours. The results showed that the oxidative products (acidic, ketonic and alcoholic compounds) increased with time. Therefore, in the absence of antio xidants, the TAN values of the base stock increased from $0.07 \mathrm{mg} \mathrm{KOH} / \mathrm{g}$ to $2.02 \mathrm{mg} \mathrm{KOH} / \mathrm{g}$ after 96 . Also viscosity increased from 52.38 to 77.71 cSt , at $40^{\circ} \mathrm{C}$ (Table 3). Consequently, after adding the prepared antioxidants the efficiency of them as inhibitors is studied.

TABLE 3. Acid numbers (ANs) and viscosity of the base oil without antioxidants.

Oxidation time interval (h)									
Total Acid numbers, KOH mg/g Sample			Viscosity (cst), at 40 ${ }^{\circ} \mathrm{C}$						
Blank	24 h	48 h	72 h	96 h	Blank	24 h	48 h	72 h	96 h
0.07	0.94	1.02	1.20	2.02	52.38	59.39	64.35	68.49	77.71

Effect of additives concentration on TAN values

Three concentrations (200,400 , and 500 ppm) of each prepared antioxidant were added to the blank sample.

The results obtained in Table 4 illustrated the following:

- After 24 h , by adding 200 ppm of antioxidant 4 a to the blank sample, total acid number value decreased from 0.94 to $0.069 \mathrm{KOH} \mathrm{mg} / \mathrm{g}$. After 48 h , the value decreased from 1.02 to $0.083 \mathrm{KOH} \mathrm{mg} / \mathrm{g}$. A marked decrease is observed in the third day of oxidation (72 h), from 1.2 to 0.441 KOH mg / g. Consequently, after 96 h the value decreased from 2.02 down to $0.778 \mathrm{KOH} \mathrm{mg} / \mathrm{g}$.
- In the case of blank with 400 ppm of 4 a , the values of TAN decreased during the oxidation period $(24-96 \mathrm{~h})$ as follows: $(0.94-2.02$ down to $0.075-0.916 \mathrm{KOH} \mathrm{mg} / \mathrm{g}$).
- Increasing concentration of 4 a to 500 ppm gave the following results of the TAN values ($0.94-2.02$ down to $0.164-1.003 \mathrm{KOH} \mathrm{mg} / \mathrm{g}$).
- Addition of 4 b to blank sample (200,400 and 500 ppm) during the oxidation period illustrate the following:
a) With 200 ppm , TAN changed (from $0.94-2.02$ down to $0.082-0.936$ $\mathrm{KOH} \mathrm{mg} / \mathrm{g}$) respectively.
b) After adding 400 ppm the values gradually changed from (0.94-2.02 down to $0.116-1.007 \mathrm{KOH} \mathrm{mg} / \mathrm{g}$) respectively.
c) The effect of adding 500 ppm of 4 b on the plank sample decreases the TAN by the following values, (from $0.94-2.02$ down to $0.235-1.260$ $\mathrm{KOH} \mathrm{mg} / \mathrm{g}$) respectively.
- Finally, by studying the effect of antioxidant $4 \mathrm{c}(200,400$ and 500 ppm$)$ on the blank sample during the oxidation time interval we noticed that:
a) With 200 ppm , TAN changed (from $0.94-2.02$ down to $0.109-0.968$ $\mathrm{KOH} \mathrm{mg} / \mathrm{g}$) respectively.
b) With increasing concentration up to 400 ppm , the values have changed, (from $0.94-2.02$ down to $0.152-1.201 \mathrm{KOH} \mathrm{mg} / \mathrm{g}$) respectively.
c) At last, after adding 500 ppm of 4 c , the values changed from $0.94-2.02$ down to $0.246-1.343 \mathrm{KOH} \mathrm{mg} / \mathrm{g}$ during the time interval respectively.

Effect of electron donating and withdrawing groups

As it is clear from Scheme 3, the data shown in Table 4, we noticed that the most effective substituted groups are shown with donating group (4a) than withdrawing groups (4 b and 4 c) This may be attributed to the electron donating nature group (4a) that facilitates the break of the hydrogen-bonded to the nitrogen to produce a stable free radical but in case of electron withdrawing groups $(4 \mathrm{~b}, 4 \mathrm{c}$) that may increase the difficulty of the $\mathrm{N}-\mathrm{H}$ bond breaking whereby it has a much lower oxidation stability.

TABLE 4. Variation of TAN with oxidation time at changed additive concentrations.

Compound	Total Acid number, KOH mg / g Sample				
	Concentration (ppm)	Time (h)			
	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{7 2}$	$\mathbf{9 6}$	
	200	0.069	0.083	0.441	0.778
	400	0.075	0.098	0.631	0.917
	500	0.164	0.246	0.756	1.003
4 b	200	0.082	0.138	0.532	0.936
	400	0.116	0.172	0.698	1.007
	500	0.235	0.361	0.799	1.260
	200	0.109	0.195	0.586	0.968
	400	0.152	0.236	0.739	1.201
	500	0.246	0.404	0.854	1.343

The data showed in Fig. 1, 2 and 3 represented the correlation between the oxidation periods and TAN of blank sample without and with additive concentrations of 200,400 and 500 ppm , for compounds $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c , respectively. The order of increasing inhibition efficiency is ranked as follows:
$4 a>4 b>4 c>b l a n k$. Thence, increasing the additive concentration from 200 to 500 ppm lead to an increase in the TAN values. This may be attributed to high sulphurpercent which retard the inhibition efficiency [32].

Fig.1. TAN variation of the base stock without and with 200 ppm of $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c .

Fig. 2. TAN variation of the base stock without and with 400 ppm of $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c .

Fig. 3. TAN variation of the base stock without and with 500 ppm of $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c .

Effect of antioxidants on viscosity of blank sample

The most important physical properties for the categorization of base stock is Viscosity. As the oxidative products increased lead to the formation of sludge and other higher molecular weight compounds so causing the increasing in viscosity. The data shown in Table 3 obtained that the viscosity of the blank sample increased from 52.38 up to 77.71 cSt after oxidation for 24 to 96 hours. The data of the viscosity values are tabulated in Table 5 and graphically represented in Fig. 4-6, the results of the viscosities are given after oxidation time intervals for ($24,48,72$ and 96 hours). The viscosity decreased by increasing the additive concentration from 200 ppm up to 500 ppm . Among the three base compounds ($4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c), the order of these compounds towards decreasing viscosity is ranked as follows $4 a>4 b>4 c$.

Correlation of the antioxidants activity with their structures

The program Ab initio (HF/3-21G) can be used for correlation between the structure of the prepared compounds and their antioxidant activity. The more values of the $\mathrm{E}_{\text {Номо }}$ simplify adsorption and then restraint by the effect of transported process through the adsorbed layer . Low energy gap ($\Delta \mathrm{E}$) gives good antioxidant efficiencies. The results of the calculations, for the synthesized compounds $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c are given in Table 6 . The results obtained by Ab initio $\mathrm{HF} / 3-21 \mathrm{G}$ method showed that ($4 \mathrm{a} ; \Delta \mathrm{E}=4.963$), $(4 \mathrm{~b} ; \Delta \mathrm{E}=5.304),(4 \mathrm{c} ; \Delta \mathrm{E}=$ 5.344). According to these values, the efficiency order is as follows $4 a>4 b>4 c$. The HF/3-21G calculations agreed with the experimental data.

TABLE 5. Variation of viscosity with oxidation time and different additive concentrations.

Compound	Viscosity, cst at $40{ }^{\circ} \mathrm{C} \times 10^{2}$				
	Concentration (ppm)	Oxidation time (hr)			
		24	48	72	96
4a	200	5239	5243	5370	5736
	400	5242	5247	5702	6011
	500	5253	5264	5722	6075
4 b	200	5245	5263	5854	6013
	400	5257	5298	5988	6032
	500	5266	5314	6018	6154
4 c	200	5251	5272	5901	6025
	400	5268	5321	6035	6121
	500	5278	5333	6066	6371

Fig. 4. Variation of viscosity of the base oil with 200 ppm of antioxidants $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c .

Fig. 5. Variation of viscosity of the base oil with 400 pm of antioxidants $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c .

Fig. 6. Variation of viscosity of the base oil with 500 ppm of antioxidants $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c .
TABLE 6. Quantum Chemical Parameters.

Compound	Quantum Parameters						
	Dipole Moment (Debye)	Total energy (Kcal/mole)	$\mathbf{E}_{\mathbf{L U M O}}$ $\mathbf{e V}$	$\mathbf{E}_{\text {HOMO }}$ $\mathbf{e V}$	$\Delta \mathbf{E} \mathbf{e V}$ $\mathbf{E}_{\text {LUMO }}-$ $\mathbf{E}_{\text {HOMO }}$		
	Ab Initio HF/3-21G						
	3.11	7.736	-2.924	-7884	4.963		
4 b	3.74	12.548	-2.594	-7898	5.304		
4 c	3.36	12.384	-2.595	-7.939	5.344		

Evaluation of the synthesized compounds as corrosion inhibitors for carbon steel in acid medium

Potentiodynamic polarization measurements are performed for carbon steel immersed in 1 M HCl in absence and presence of the synthesized compounds to evaluate their effectiveness as corrosion inhibitors. From Table 7 and Fig. 7, the Egypt. J. Chem. 60, No. 1 (2017)
efficiency order of these compounds towards corrosion inhibition is ranked as follows: $4 \mathrm{a}>4 \mathrm{~b}>4 \mathrm{c}$ with value $76.1>68.8>56.0 \%$, respectively and the Data reveal the following:
1- Addition of any of the three compounds resulted in a significant reduction in the corrosion current density $\left(I_{\text {corr }}\right)$ in comparison to that measured in the blank acid solution. On increasing the concentration of these inhibitors, $I_{\text {corr }}$ decreases continuously indicating that their molecules adsorb on Carbon steel surface forming a physical barrier against the corrosion attack via blocking the active sites on the steel surface[33].

The maximum displacement in $E_{\text {corr }}$ measured in the presence of corrosion inhibitors, with respect to that measured in the blank acid solution, is $+99,+46$, +31 mV for $4 \mathrm{a}, 4 \mathrm{~b}$ and 4 c , respectively. According to Riggs [34] an inhibitor can be classified as anodic or cathodic-type inhibitor if the $E_{\text {corr }}$ displacement is at least $\pm 85 \mathrm{mV}$ relative to the value of $E_{\text {corr }}$ measured for the blank solution. Therefore, 4 a can act as anodic-type inhibitor while 4 b and 4 c act as mixed-type inhibitors with major effectiveness on anodic reactions. This behavior supports the adsorption of inhibitor onto the metal surface and caused a barrier effect for mass and charge transfer of anodic and cathodic reactions [35].

TABLE 7. Electrochemical polarization parameters for the corrosion of carbon steel in 1 M HCl containing various concentrations of the investigated inhibitors.

Inhibitor	Concentration (mmol $\mathbf{d m - 3)}$	-Ecorr (mV vs. $\mathbf{S C E})$	Icorr (mA cm- $\mathbf{2)}$	$\boldsymbol{\eta} \mathbf{p}$ $(\mathbf{\%})$
Blank	0	558	1.2235	---
4 a	0.025	480	0.3618	70.4
	0.050	459	0.3507	71.3
	0.075	504	0.2926	76.1
4 b	0.025	562	0.4590	62.5
	0.050	512	0.4216	65.5
	0.075	528	0.4067	68.8
4 c	0.025	553	0.7639	37.6
	0.050	527	0.5581	54.4
	0.075	544	0.5383	56.0

Fig.7. Relationship between corrosion inhibition efficiency ($\eta \mathrm{p}$, \%) and different concentrations of the investigatedinhibitors in 1 M HCl .

Conclusion

The newly prepared compounds were examined as antioxidant and anticorrosion the compounds $4 \mathrm{a}, 4 \mathrm{~b}$ (high $\mathrm{E}_{\text {НОмо }}$) were showed high antio xidant activities and anticorrosion. There are relationships between anticorrosion and antioxidant agents from point of view quantum chemical parameter. Increasing in the $\mathrm{E}_{\text {номо }}$ values refer to high antioxidant activity that was identical to identical to the experimental results.

References

1. Ohgake, R., Sunami M., Yoshida T., and Watanabe H., ASTM Spec. Tech. Publi, No. 1021, 32 (1989).
2. Sumittra, D. P. Amorn Tribology Internat., 44(3), 266 (2011).
3. Migdal, C.A. "Lubric. Addi. Chem. Applica." NY: Marcel Dekker Inc; p 1-23 (2003).
4. Troyer, D. and Fitch J. Oil Anal Basic, $1^{\text {st }}$ ed. Chippenharm: Coxmoor Publi. (2003).
5. Bhatlacharya A., Singh, T., Verma, V.K. and Nakagama K., Wear, 136, 345 (1990).
6. Huang, W. J., Wu, X. H. and Zeng Y., J. Synth. Lubrication, 21(3), 231 (2004).
7. Hassan, H. M., Amer F. A., Moawad, E. B. and Shaker N., Lubrication Sci., 22, 163 (2010).
8. El Sayed, E., Esam E., Nadjet, R., Hamdy, H.A., Wedad, M.A. and Yasser, M. B., J. Saudi Chemical Society 18, 443 (2014).
9. EL-Hashash, M. A., Rizk, S. A., ShakerS. A., and Mostafa, K.K., Egypt. J. Chem., 55, 1 (2012).
10. El-Hashash, M. A. , Rizk, S. A., and Atta-Alla, S.R., Molecules, 20, 22069 (2015).
11. Rizk S. A., Amer. J. Chem., 1, 66 (2011),DOI: 10. 5923/j.chemistry. 20110101.01
12. El-Hashash M. A., and Rizk, S. A., Eur. Chem. Bull., 2(9), 637 (2013).
13. El-Hashash M.A. and S.A. Rizk, J. heterocycl. Chem., 53, 32 (2015).
14. El-Hashash, M. A. and Rizk, S. A., E. J. Chem., 54, 3 (2011).
15. El-Hashash M.A. and RizkS.A., Inter J Chem Petrochem Tech (IJCPT), 3, 1 (2013).
16. El-Hashash M.A., Rizk S.A. and Nessim M. I., Chem. Eng. Pro. Tech (CEPT), 4(6), (2013).
17. K. Toshikazu, Food Ingred. J. Japan, 206 (2002).
18. D. Barrett, A. Tanaka, K. Harada, H. Ohki, E. Watabe, K. and Maki, F. Ikeda, Bioorg. Med. Chem. Lett., 11, 479 (2001).
19. J. T. Kovalainen, J. A. M. Christains, S. Kotisaati, J. T. Laitinen and P. T. Mannisto, J. Med. Chem., 42, 1193 (1999).
20. P. Cotelle, N. Cotelle, E. Teissier and H. Vezin, Bioorg. Med. Chem. 11, 1087 (2003).
21. V., Weber, P. Coudert, C. Rubat, E. Duroux, J.C. Vallee-Gramain, J. Couquelet and M. Madesclaire, Bioorg. Med. Chem. 10, 1647 (2002).
22. V. Weber, P. Coudert, C. Rubat, E. Duroux and F. Leal, J. Couquelet, J. Pharm. Pharmacol., 52, 523 (2000).
23. S. Manfredini, S. Vertuani, B. Manfredi, G. Rossini, G. Calviello and P. Palozza, Bioorg. Med. Chem. 8, 2791 (2000).
24. T. Mashino, Y. Takigawa, N. Saito, L. Q. Wong and M. Mochizuki, Bio org. Med. Chem. Lett., 10, 2783 (2000).
25. Hergold-Brundic, A., Nagl A., Balzarini, J., Yong-Jin, Y., In-Sun, K., and Park ,J. K., Bull. Kor Chem. Soc., 28, 8 (2007).
26. Piaz, V.D., Vergelli, C., Giovannoni, M.P., Scheideler, M.A., Petrane, G., and Zaratin, P., Farmaco, 58, 1063 (2003).
27. Horino H., Mimura T., Kagechika K., Ohta M., Kubo H. and Kitagawa M., Chem. Pharm.Bull. 46, 402 (1998).
28. Yamamoto, A., Iwama, T., Takeda, H. and Nagai, H., Jpn. J. Pharmcol, 68, 47 (1995).
29. Tsubaki, K., Taniguchi, K., Tabuchi, S., Okitsu, O., Hahori, K., Soki, J., Sakane, K. and Tanaka, H., Bioorg.Med.Chem.Lett. 12, 2787 (2000).
30. Robert Allcock, W., Jiang, H., Z., Johnston, K. A., Morgan, K. M., Rosair, G. M., Iwase, K., Kohno, Y. and Adam, D. R., Bioorg. \& Med . Chem. Lett. 21, 3307 (2011).
31. Kesharwani, K., Sahu, N.K. and Kohli ,D. V., J. pharma, Chem. 43, 6 (2009).
32. Nessim, M.I., Osman, D.I., Attia E.K., Ahmed E.A. and Mohammed H.A., Int. J. Curr.Res.Chem. Pharma. Sci. 2(2), 80-93 (2015).
33. Faustin, M., Maciuk, A., S alvin, P., Roos, C. and Lebrini, M., Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1 M hydrochloric acid: Electrochemical and phytochemical studies. Corros. Sci., 92, 287-300 (2015).
34. Riggs Jr., O.L. Corrosion Inhibitors, $2^{\text {nd }}$ ed., C.C. Nathan, Houston, TX, (1973).
35. Ahmed M. Al-Sabagh A., Notaila M. Nasser A., Ahmed A. Farag B., Mohamed A. Migahed B., Abdelmonem M.F. Eissa C., Tahany Mahmoud A. Egyptian Journal of Petroleum 22, 101-116 (2013).

Received 16/2/2017; accepted 29/3/2017)
توليف وتطبيقات بيريدازينونـات لتحسين خو اص الزيوت الاساسية
سامح رزق' ، سيد عطية’ ، دعاء عثمان" و ماهر ابر هيم نسيم’
'قسم الكيمياء ـكلية العلوم- جامعة عين شمس و 「معهد بحوث البترولـ القاهرة -مصر.
التقليدية للتحليل، التحليل العنصري، الأشعة تحت الحمراء و الرنين المغناطيسى الهيبروجينى. وأكدت
أدوات التحليل المركبات الثثاثة المخلة. هذه المركبات الاروماتية غير التتجانسة مستقرة كيميائيا ولها
خواص متعددة لتحسين مواصفات زيوت التزيبت الاساسبة. لقد تم اختبار ها كمضادات الأكسدة للزيت
المحلي من خلال التغيير في عدد الحمض الكلي (تان). وقد أظهرت نتائج جيدة كمضادات الأكسدة لزيت
الأساس. كما تم اختبار هذه المركبات الثلاثة كمثبطات تآكل للصلب الكربوني في وسط حامضى. و قـ تم
المدار الجزيئي الدحتل (هومو) وأقل المداري الجزيئية غير المأهولة (لومو) للمركبات المحضرة الثلاثة
عبر طر يقة أب إنيشيو. وأظهرت در اسة الحسابـات الكيمائية الكيمياوية للمركبات المركبة تطابقا جبيا مع
النتائج التجريبية.

Egypt. J. Chem. 60, No. 1 (2017)

[^0]: *Correspondence: maherni@yahoo.com,_Tel.: 01227313378
 DOI : 10.21608/ejchem.2017.675.1015
 © 2017 The National Information \& Documentation Center (NIDOC)

